
Shortest Path with Negative
Weights

The Bellman-Ford Algorithm

Clicker Q: What is the shortest path from A to C?

A

B C

D

5

2

2

-2

3

A. A -> B -> C
B. A -> D -> B -> C
C. A -> D -> B -> C -> D -> B -> C
D. There is no shortest path because there is a

cycle.

Different weights. Now what is the shortest path
from A to C?

A

B C

D

5

2

-2

-2

3

A. A -> B -> C
B. A -> D -> B -> C
C. A -> D -> B -> C -> D -> B -> C
D. There is no shortest path because there is a

cycle.

What is the difference?

A

B C

D

5

2

2

-2

3

A

B C

D

5

2

-2

-2

3

Shortest paths

No shortest
paths

Sometimes we want to find the shortest paths in a
graph where the edges have weights that aren't
necessarily positive. For example, suppose you are
investing in currency exchange market. National
currencies are sometimes overvalued or undervalued,
so that if you use US dollars to buy British pounds,
which you then sell for euros and use the euros to buy
Japanese yen, you might find that the yen are worth
more or less than the dollars you started with. You
could model this with a graph whose nodes represent
nations and whose edges represent the percentage
gain or loss of transferring one currency for another.
The cheapest path from one node to another
represents the cheapest way to transform one
currency into another.

Note that once we introduce negative edge
weights, there might not be cheapest paths.
Consider the following graph:

A

B

C

D
5

-4

1

2

There is a direct path from A to B of cost 5.
However, the route A -> B -> C -> D -> B only has
cost 4. If we go
A -> B -> C -> D -> B -> C -> D -> B the cost is only 3.
If we went around the cycle 100 times the cost
would be -95. It should be clear that there is no
cheapest path from A to B; we can get a path as
cheap as we wish by simply going around the cycle
often enough.

A

B

C

D
5

-4

1

2

Our other shortest path algorithms
(unweighted, non-negative weights) were not
bothered by cycles. Cycles themselves are not
the problem here. In the following graph

A

B

C

D
5

-2

1

2

the cheapest path from A to B has cost 5, from A to
C has cost 6 and from A to D has cost 8. Problems
occur if the weights on the edges of a cycle sum to a
negative number. Such a "negative-cost cycle"
prevents there from being minimum cost paths.

Our first two algorithms for finding shortest
paths were based on the fact that when we
pulled a note out of our data structure (a queue
for the unweighted problem, a priority queue for
the postitive-weights one) we knew the shortest
path to it. That doesn't apply here, since there
might be an unexplored node with an edge back
to our node that has a large negative cost. We
can't know the shortest path to anything without
exploring all edges in the graph.

We return to our queue data structure, which
explores nodes based on the number of edges
in their path from the source. Let X be the
node at the head of the queue. When we
remove X from the queue we know the
cheapest path to it so far.

What does this mean? We first put into the
queue all of the nodes with a path of length 1 (i.e,
1 edge). As we take these out we add behind
them nodes with a path of length 2, behind these
we add nodes with a path of length 3, and so
forth. We could keep track of the number of
nodes on the path that its current cost
represents.

We might keep track of the number of times
any node has left the queue. The first time it
leaves the queue the path to it must be at least
one. The next time it is added to the queue the
path to it must be of length 2 or more, so the
second time it leaves the queue its cost is the
minimum cost for paths of length 2 or less
leading to it. In general, the kth time it comes
from the queue its weight is the minimum cost
for paths of length k or less leading to it.

For each of the nodes pointed to by X we can
calculate a new cost: the cost of the path to X
plus the cost of the edge from X to this node. If
this is cheaper than the previous cost of the
node, we update its cost to this and add it to the
queue (if it isn't already there). If the queue ever
empties out, that means there are no
unexplored cheaper paths and the we must have
found all of the minimum cost paths. The queue
won't empty out if there is a negative-cost cycle.

How can we detect a negative-cost cycle?
Nodes will be added to the queue over and
over. Consider the following graph:

S

A

B C

D

E
10

10

-1

-1

-1
-1

-1
-1

-1

Here node A is added to the queue once for
each other node in the graph.

Now suppose the graph has n nodes and there is
a path to node X with n edges that is cheaper
than any shorter path. If the graph has n nodes
and this path has n edges (and so n+1 nodes),
this means there is a repeated node, which
means there is a cycle in the path. If the n-edge
path is cheaper than the same path without the
cycle, this must be a negative-cost cycle. So if
this ever happens, there is no solution to the
shortest path problem.

How long does this take?

We must remove each vertex from the queue at
most |V| times. Each time we do this we walk
along each of the vertex's edges, so O(|E| |V|)
is our estimate. For most graphs
|V| < |E| < |V|2, so this gives an estimate
between O(|V|2)) and O(|V|3).

Our estimate for finding shortest paths for a graph
with non-negative weights was O(|E| log(|E|)).
Think about the difference between O(|E| |V|)
and O(|E|log(|E|)) as the price of using negative
weights.

In lab 10 we will build some enormous graphs
using IMDB data about movies and actors. A
graph with 10,000 nodes and 100,000 edges is
easy to construct. Here |E||V| is 109.
|E|log(|V|) is 5*105 (using base-10 logs). The
shortest path algorithm with positive weights
runs faster by a factor of about 2000. This
means that if finding shortest paths with
positive weights takes 30 seconds, finding
them with negative weights might take 16
hours. Of course, sometimes you can't avoid
the negative weights and being slow is better
than not solving the problem at all.

