
Shortest Path with Negative 
Weights

The Bellman-Ford Algorithm



Clicker Q: What is the shortest path from A to C?
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A. A -> B -> C
B. A -> D -> B -> C
C. A -> D -> B -> C -> D -> B -> C
D. There is no shortest path because there is a 

cycle.



Different weights. Now what is the shortest path 
from A to C?
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A. A -> B -> C
B. A -> D -> B -> C
C. A -> D -> B -> C -> D -> B -> C
D. There is no shortest path because there is a 

cycle.



What is the difference?
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Sometimes we want to find the shortest paths in a 
graph where the edges have weights that aren't 
necessarily positive.  For example, suppose you are 
investing in currency exchange market.  National 
currencies are sometimes overvalued or undervalued, 
so that if you use US dollars to buy British pounds, 
which you then sell for euros and use the euros to buy 
Japanese yen, you might find that the yen are worth 
more or less than the dollars you started with.  You 
could model this with a graph whose nodes represent 
nations and whose edges represent the percentage 
gain or loss of transferring one currency for another.  
The cheapest path from one node to another 
represents the cheapest way to transform one 
currency into another.



Note that once we introduce negative edge 
weights, there might not be cheapest paths.  
Consider the following graph:
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There is a direct path from A to B of cost 5.  
However, the route A -> B -> C -> D -> B only has 
cost 4.  If we go
A -> B -> C -> D -> B -> C -> D -> B the cost is only 3.  
If we went around the cycle 100 times the cost 
would be -95.  It should be clear that there is no 
cheapest path from A to B; we can get a path as 
cheap as we wish by simply going around the cycle 
often enough.
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Our other shortest path algorithms 
(unweighted, non-negative weights) were not 
bothered by cycles.  Cycles themselves are not 
the problem here.  In the following graph
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the cheapest path from A to B has cost 5, from A to 
C has cost 6 and from A to D has cost 8.  Problems 
occur if the weights on the edges of a cycle sum to a 
negative number.  Such a "negative-cost cycle" 
prevents there from being minimum cost paths.



Our first two algorithms for finding shortest 
paths were based on the fact that when we 
pulled a note out of our data structure (a queue 
for the unweighted problem, a priority queue for 
the postitive-weights one) we knew the shortest 
path to it.  That doesn't apply here, since there 
might be an unexplored node with an edge back 
to our node that has a large negative cost.  We 
can't know the shortest path to anything without 
exploring all edges in the graph.  



We return to our queue data structure, which 
explores nodes based on the number of edges 
in their path from the source.  Let X be the 
node at the head of the queue.  When we 
remove X from the queue we know the 
cheapest path to it so far.   



What does this mean?  We first put into the 
queue all of the nodes with a path of length 1 (i.e, 
1 edge).  As we take these out we add behind 
them nodes with a path of length 2, behind these 
we add nodes with a path of length 3, and so 
forth.  We could keep track of the number of 
nodes on the path that its current cost 
represents.



We might keep track of the number of times 
any node has left the queue.  The first time it 
leaves the queue the path to it must be at least 
one.  The next time it is added to the queue the 
path to it must be of length 2 or more, so the 
second time it leaves the queue its cost is the 
minimum cost for paths of length 2 or less 
leading to it.  In general, the kth time it comes 
from the queue its weight is the minimum cost 
for paths of length k or less leading to it.



For each of the nodes pointed to by X we can 
calculate a new cost: the cost of the path to X 
plus the cost of the edge from X to this node.  If 
this is cheaper than the previous cost of the 
node, we update its cost to this and add it to the 
queue (if it isn't already there). If the queue ever 
empties out, that means there are no 
unexplored cheaper paths and the we must have 
found all of the minimum cost paths.  The queue 
won't empty out if there is a negative-cost cycle.  



How can we detect a negative-cost cycle?  
Nodes will be added to the queue over and 
over.  Consider the following graph:
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Here node A is added to the queue once for 
each other node in the graph.  



Now suppose the graph has n nodes and there is 
a path to node X with n edges that is cheaper 
than any shorter path.  If the graph has n nodes 
and this path has n edges (and so n+1 nodes), 
this means there is a repeated node, which 
means there is a cycle in the path.  If the n-edge 
path is cheaper than the same path without the 
cycle, this must be a negative-cost cycle.  So if 
this ever happens, there is no solution to the 
shortest path problem.



How long does this take?

We must remove each vertex from the queue at 
most |V| times.  Each time we do this we walk 
along each of the vertex's edges, so O( |E| |V| ) 
is our estimate.  For most graphs 
|V| < |E| < |V|2, so this gives an estimate 
between O(|V|2)) and O( |V|3 ).



Our estimate for finding shortest paths for a graph 
with non-negative weights was O( |E| log(|E|)  ).  
Think about the difference between O( |E| |V| ) 
and O( |E|log(|E|) ) as the price of using negative 
weights.



In lab 10 we will build some enormous graphs 
using IMDB data about movies and actors.  A 
graph with 10,000 nodes and 100,000 edges is 
easy to construct.  Here |E||V| is  109.   
|E|log(|V|) is 5*105 (using base-10 logs). The 
shortest path algorithm with positive weights 
runs faster by a factor of about 2000.   This 
means that if finding shortest paths with 
positive weights takes 30 seconds, finding 
them with negative weights might take 16 
hours. Of course, sometimes you can't avoid 
the negative weights and being slow is better 
than not solving the problem at all.


